• Дмитро Валерійович Мальцев Candidate of Sciences in Medicine, associate professor, head of the laboratory of immunology and molecular biology Experimental and Clinical Medicine Institute at the O.O. Bogomolets National Medical University
  • Ніна Володимирівна Коляденко PhD, Associate Professor, Head of the Department of Medical Psychology of the Institute of Medical and Pharmaceutical Sciences, PJSC “Interregional Academy of Personnel Management”
Keywords: autoantibodies, proinflammatory cytokines, neurotropic infections, folate cycle deficiency, immunotherapy.


The article reviews the latest advances in understanding the immunopathogenesis of autism spectrum disorders and other common neuropsychiatric diseases in children in the light of the modern folate-centric scientific concept of the pathways of cerebral damage in immunopsychiatry. The main biochemical disorders, signs of oxidative stress, manifestations of immunodeficiency and related immune dysregulation, key immunedependent mechanisms of damage to the nervous system, such as reactivated neurotropic infections, autoimmune reactions to neurons and myelin of the CNS, immunoinflammatory reactions with hyperproduction of proinflammatory cytokines, that have pronounced neurotoxic effects, are analyzed in detail. The results of the main meta-analyses, systematic reviews, randomized controlled clinical trials testing various strategies for the treatment of autism spectrum disorders, based on the modern folate-centric concept of the immunopathogenesis of the disease, are also presented, in particular – diet therapy, biochemical correction, pre/probiotics and transplantation of the gut microbiome, normal i/v human immunoglobulin in high dose, infliximab and rituximab. At the end of the article, the most promising directions of further scientific research in the field of Neuroimmunology of severe neuropsychiatric syndromes in children are outlined, which can lead to revolutionary changes in the approaches to the diagnosis and treatment of previously incurable mental illnesses of the younger generation.


Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis// Autism Res. – 2013. – Vol. 6(5). – P. 384–392.

Mohammad N.S., Shruti P.S., Bharathi V. et al. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders // Psychiatr. Genet. – 2016. – Vol. 26(6). – P. 281–286.

Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility // Metab. Brain Dis. – 2016. – Vol. 31(4). – P. 727–735.

Sadeghiyeh T., Dastgheib S.A., Mirzaee-Khoramabadi K. et al. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis // Asian J Psychiatr. – 2019. – Vol. 46. – P. 54–61.

Li Y., Qiu S., Shi J. et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a metaanalysis // BMC Pediatr. 2020. – Vol. 20(1). – P. 449.

Haghiri R., Mashayekhi F., Bidabadi E., Salehi Z. Analysis of methionine synthase (rs1805087) gene polymorphism in autism patients in Northern Iran // Acta Neurobiol. Exp. (Wars). – 2016. – Vol. 76(4). – P. 318–323.

Frustaci A., Neri M., Cesario A. et al. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses // Free Radic. Biol. Med. – 2012. – Vol. 52(10). – P. 2128–2141.

Chen L., Shi X.J., Liu H. et al. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109) // Transl. Psychiatry. – 2021. – Vol. 11(1). – P. 15.

Yonk L.J., Warren R.P., Burger R.A. et al. CD4+ helper T cell depression in autism // Immunol. Lett – 1990. – Vol. 25. – P. 341–345.

Warren R.P., Burger R.A., Odell D. et al. Decreased plasma concentrations of the C4B complement protein in autism // Arch. Pediatr. Adolesc. Med. – 1994. – Vol. 148(2). – P. 180–183.

Warren R.P., Margaretten N.C., Foster A. Reduced natural killer cell activity in autism // J. Am. Acad. Child. Adolesc. Psycho1. – 1987. – Vol. 26. – P. 333–335.

Warren R.P., Odell J.D., Warren W.L. et al. Brief report: immunoglobulin A deficiency in a subset of autistic subjects // J. Autism. Dev. Disord. – 1997. – Vol. 27(2). – P. 187–192.

Russo A.J., Krigsman A., Jepson B., Wakefield A. Low serum myeloperoxidase in autistic children with gastrointestinal disease // Clinical and Experimental Gastroenterology. – 2009. – Vol. 2. – P. 85–94.

Salehi Sadaghiani M., Aghamohammadi A., Ashrafi M.R. et al. Autism in a child with common variable immunodeficiency // Iran. J. Allergy Asthma Immunol. – 2013. – Vol. 12(3). – P. 287–289.

Gazit Y., Mory A., Etzioni A. et al. Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature // J. Clin. Immunol. – 2010. – Vol. 30(2). – P. 308–313.

Vinck A., Verhagen M.M., Gerven Mv. Cognitive and speech-language performance in children with ataxia telangiectasia // Dev. Neurorehabil. – 2011. – Vol. 14(5). – P. 315–322.

Shin S., Yu N., Choi J.R. et al. Routine chromosomal microarray analysis is necessary in Korean patients with unexplained developmental delay/mental retardation/autism spectrum disorder // Ann. Lab. Med. – 2015. – Vol. 35(5). – P. 510–518.

Liao P., Soong T.W. CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency // Pflugers Arch. – 2010. – Vol. 460(2). – P. 353–359.

Grimbacher B., Dutra A.S., Holland S.M. et al. Analphoid marker chromosome in a patient with hyper-IgE syndrome, autism, and mild mental retardation // Genet. Med. – 1999. – Vol. 1(5). – P. 213–218.

Isung J., Williams K., Isomura K. et al. Association of Primary Humoral Immunodeficiencies With Psychiatric Disorders and Suicidal Behavior and the Role of Autoimmune Diseases // JAMA Psychiatry. – 2020. – Vol. 77(11). – P. 1147–1154.

Mead J., Ashwood P. Evidence supporting an altered immune response in ASD // Immunol. Lett. – 2015. – Vol. 163(1). – P. 49-55.

Noriega D.B., Savelkoul H.F. Immune dysregulation in autism spectrum disorder // Eur. J. Pediatr. – 2014. – Vol. 173(1). – P. 33–43.

Hughes H.K., Ko E.M., Rose D., Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders // Front Cell Neurosci. – 2018. – Vol. 12. – P. 405.

Van der Weyden M.B., Hayman R.J. et al. Folate-deficient human lymphoblasts: changes in deoxynucleotide metabolism and thymidylate cycle activities // Eur. J. Haematol. – 1991. – Vol. 47(2). – P. 109–114.

Partearroyo T., Úbeda N., Montero A. Vitamin B(12) and folic acid imbalance modifies NK cytotoxicity, lymphocytes B and lymphoprolipheration in aged rats // Nutrients. – 2013. – Vol. 5(12). – P. 4836–4848.

Courtemanche C., Elson-Schwab I., Mashiyama S.T. Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro // J. Immunol. – 2004. –Vol. 173(5). – P. 3186–3192.

Abe I., Shirato K., Hashizume Y. Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats // Environ Health Prev. Med. – 2013. – Vol. 18(1). – P. 78–84.

Troen A.M., Mitchell B., Sorensen B. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women // J. Nutr. – 2006. – Vol. 136(1). – P. 189–194.

Bhatnagar N., Wechalekar A., McNamara C. Pancytopenia due to severe folate deficiency // Intern. Med. J. – 2012. – Vol. 42(9). – P. 1063–1064.

Binstock T. Intra-monocyte pathogens delineate autism subgroups // Med. Hypotheses. – 2001. – Vol. 56(4). – P. 523–531.

Nicolson G.L., Gan R., Nicolson N.L., Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders // J. Neurosci Res. – 2007. – Vol. 85(5). – P. 1143–1148.

Sakamoto A., Moriuchi H., Matsuzaki J. et al. Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit // Brain. Dev. – 2015. – Vol. 37(2). – P. 200–205.

Valayi S., Eftekharian M.M., Taheri M., Alikhani M.Y. Evaluation of antibodies to cytomegalovirus and Epstein-Barr virus in patients with autism spectrum disorder // Hum. Antibodies. – 2017. – Vol. 26(3). – P. 165–169.

Jyonouchi H., Geng L., Streck D.L., Toruner G.A. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study // J. Neuroinflammation. – 2012. – Vol. 9. – P. 4.

Hughes H.K., Ashwood P. Anti-Candida albicans IgG Antibodies in Children With Autism Spectrum Disorders // Front. Psychiatry. – 2018. – Vol. 26(9). – P. 627. doi: 10.3389/fpsyt.2018.00627.

Nayeri T., Sarvi S., Moosazadeh M. et al. Relationship between toxoplasmosis and autism: A systematic review and meta-analysis // Microb. Pathog. – 2020 – Vol. 147. – P. 104434.

Kuhn M., Grave S., Bransfield R., Harris S. Long term antibiotic therapy may be an effective treatment for children co-morbid with Lyme disease and autism spectrum disorder // Med Hypotheses. – 2012. – Vol. 78(5). – P. 606–615. doi: 10.1016/ j.mehy.2012.01.037.

Rout U.K., Mungan N.K., Dhossche D.M. Presence of GAD65 autoantibodies in the serum of children with autism or ADHD // Eur. Child. Adolesc. Psychiatry. – 2012. – Vol. 21(3). – P. 141–147.

Frye R.E., Sequeira J.M., Quadros E.V. et al. Cerebral folate receptor autoantibodies in autism spectrum disorder // Mol. Psychiatry. – 2013. – Vol. 18(3). – P. 369–381.

Cabanlit M., Wills S., Goines P. et al. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder // Ann. N. Y. Acad. Sci. – 2007. – Vol. 107. – P. 92–103.

Gonzalez-Gronow M., Cuchacovich M., Francos R. et al. Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus // J. Neuroimmunol. – 2015. – Vol. 287. – P. 1–8.

Gesundheit B., Rosenzweig J.P., Naor D. et al. Immunological and autoimmune considerations of Autism Spectrum Disorders // J. Autoimmun. – 2013. – Vol. 44. – P. 1–7.

Platt M.P., Agalliu D., Cutforth T. et al. Hello from the Other Side: How Autoantibodies Circumvent the Blood-Brain Barrier in Autoimmune Encephalitis // Front Immunol. – 2017. – Vol. 8. – P. 442.

Liu C.V, Zhu J., Zheng X.J. et al. Anti-N-Methyl-D-aspartate Receptor Encephalitis: A Severe, Potentially Reversible Autoimmune Encephalitis // Mediators Inflamm. – 2017. – Vol. 2017. – P. 6361479.

González-Toro M.C., Jadraque-Rodríguez R., Sempere-Pérez Á. et al. Anti-NMDA receptor encephalitis: two paediatric cases // Rev. Neurol. – 2013. – Vol. 57(11). – P. 504–508.

Kiani R., Lawden M., Eames P. et al. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism // BJPsych. Bull. – 2015. – Vol. 39(1). – P. 32-35.

Menon D.U., Garg A., Chedrawi A.K. et al. Subacute encephalitis in a child seropositive for alpha-3 subunit of neuronal nicotinic acetylcholine receptors antibody // J. Pediatr. Neurol. – 2014. – Vol. 12. – P. 161–166.

Wu S., Ding Y., Wu F. et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis // Neurosci. Biobehav. Rev. – 2015. – Vol. 55. – P. 322–332.

Vojdani A., Mumper E., Granpeesheh D. et al. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15 // J Neuroimmunol. – 2008. – Vol. 205(1-2). – P. 148–154.

Ramirez-Celis A., Becker M., Nuño M., Schauer J., Aghaeepour N., Van de Water J. Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): a subtype of autism // Mol. Psychiatry. – 2021. – Vol. 26(5). – P. 1551–1560.

Xu M., Xu X., Li J., Li F. Association Between Gut Microbiota and Autism Spectrum Disorder: A Systematic Review and Meta-Analysis // Front. Psychiatry. – 2019. – Vol. 10. – P. 473.

Theoharides T.C., Tsilioni I., Patel A.B., Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders // Transl. Psychiatry. – 2016. – Vol. 6(6). – e844.

Masi A., Quintana D.S., Glozier N. et al. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis // Mol. Psychiatry. – 2015. – Vol.20(4). – P. 440–446.

Saghazadeh A., Ataeinia B., Keynejad K. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude // J. Psychiatr. Res. – 2019. – Vol. 115. – P. 90–102.

Jyonouchi H., Geng L., Davidow A.L. Cytokine profiles by peripheral blood monocytes are associated with changes in behavioral symptoms following immune insults in a subset of ASD subjects: An inflammatory subtype? // J. Neuroinflamm. – 2014. – Vol. 11. – P. 187.

Marí-Bauset S., Zazpe I,. Mari-Sanchis A. et al. Evidence of the gluten-free and casein-free diet in autism spectrum disorders: a systematic review // J. Child. Neurol. – 2014. – Vol. 29(12). – P. 1718–1727.

Ng Q.X., Loke W., Venkatanarayanan N. et al. A Systematic Review of the Role of Prebiotics and Probiotics in Autism Spectrum Disorders // Medicina (Kaunas). – 2019. – Vol. 55(5). – P. 129.

Kang D.W., Adams J.B., Gregory A.C. et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study // Microbiome. – 2017. – Vol. 5(1). – P. 10.

Li Y.J., Li Y.M., Xiang D.X. et al. Supplement intervention associated with nutritional deficiencies in autism spectrum disorders: a systematic review // Eur. J. Nutr. – 2018. – Vol. 57(7). – P. 2571–2582.

Marchezan J., Geyer E., Winkler A. et al. Immunological Dysfunction in Autism Spectrum Disorder: A Potential Target for Therapy // Neuroimmunomodulation. – 2018. – Vol. 25(5-6). – P. 300–319.

Maltsev D., Natrus L. The effectiveness of infliximab in autism spectrum disorders associated with folate cycle genetic deficiency. Psychiatry, Psychotherapy and Clinical Psychologythis, 2020, 11(3), р. 583–594.

Maltsev D. Efficacy of rituximab in autism spectrum disorders associated with genetic folate cycle deficiency with signs of antineuronal autoimmunity. Psychiatry, Psychotherapy and Clinical Psychologythis, 2021, 12(3), стр. 472–486.

Rossignol D.A., Frye R.E. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures // Mol. Psychiatry. – 2012. Vol. 17. – P. 389–401.

How to Cite
Мальцев, Д., & Коляденко, Н. (2023). IMMUNOGENETIC ASPECTS OF DISEASE PATHOGENESIS IN CHILDREN WITH AUTISM SPECTRUM DISORDERS. Men’s Health, Gender and Psychosomatic Medicine, (1-2(14-15), 47-60.