THE RESULTS OF THE STUDY OF THE MICROBIAL SPECTRUM IN CHILDREN WITH AUTISM SPECTRUM DISORDERS ASSOCIATED WITH GENETIC DEFICIENCY OF THE FOLATE CYCLE

  • Дмитро Мальцев Experimental and Clinical Medicine Institute at the O.O. Bohomolets National Medical University
Keywords: immunodeficiency, immunodiagnostics, antimicrobial therapy, immunotherapy, microbiota- gut-brain axis

Abstract

Backgrounds. The results of five meta-analyzes of randomized controlled clinical trials suggest an association of genetic folate cycle deficiency (GDFD) with autism spectrum disorders (ASD) in children. In such cases, immunodeficiency and immune dysregulation are formed, which reduces resistance to some microorganisms.
The aim of the study: to study the structure of the microbial spectrum in children with ASD associated with GDFC according to the accumulated evidence base and to evaluate the association of detected microorganisms with indicators of immune status to improve understanding of pathogenesis of encephalopathy and algorithms for diagnostics, monitoring and treatment.
Materials and methods. Medical data of 225 children aged 2 to 9 years with GDFC, in which clinical manifestations of ASD were observed (study group; SG; 183 boys and 42 girls) were retrospectively analyzed. The control group (CG) included 51 clinically healthy children (37 boys and 14 girls) of similar age and gender distribution who did not suffer from GDFC. A special laboratory examination of children in the observation groups was performed taking into account current data about the microbial spectrum in patients with ASD according to publications in PubMed and Embase. To study the associations between the indicators, the odds ratio (OR) and the 95% confidence interval (95% SI) were used. The research was performed as a fragment of research work commissioned by the Ministry of Health of Ukraine (№ state registration 0121U107940).
Results and discussion. TTV was observed in 87%, HHV-7 – 79%, HHV-6 – 68%, EBV – 59%, Streptococcus pyogenes – 46%, Candida albicans – 41%, Borrelia – 34%, Mycoplasma pneumoniae – 27%, Chlamydia pneumoniae – 26%, Yersinia enterocolitica – 23%, Toxoplasma gondii – 19%, congenital CMV neuroinfection – 7%, the consequences of HSV-1/2-neuroinfection – 5% of cases in SG (p<0,05; Z<Z0,05). HHV-6, HHV-7 and EBV have been associated with NK-, NKT- and CD8+ cytotoxic T-lymphocyte deficiencies. TTV was also associated with NK- and NKT-lymphocyte deficiencies, but not with deficiency of CD8+ cytotoxic T cells. Streptococcal infection has been associated with hypo- and dysimmunoglobulinemia, as well as myeloperoxidase deficiency. Candidiasis was associated only with myeloperoxidase deficiency. Toxoplasmosis has been reported in CD4+ T-helper deficiency and combined immune disorders. The consequences of congenital CMV neuroinfection have occurred only in combined immune disorders.
Conclusions. Children with ASD associated with GDFC are characterized by a specific microbial spectrum with predominance of intracellular opportunistic and conditionally pathogenic pathogens, which is determined by the disorders of immune status provoked by GDPC, which should determine the algorithm of rational antimobiological, immunological diagnostic search and treatment.

References

1. Azhari A., Azizan F., Esposito G. A systematic review of gut-immune-brain mechanisms in Autism Spectrum Disorder // Dev. Psychobiol. – 2019. – Vol. 61(5). – P. 752-771. doi: 10.1002/dev.21803.
2. Baj J., Sitarz E., Forma A. et al. Alterations in the Nervous System and Gut Microbiota after beta-Hemolytic Streptococcus Group A Infection-Characteristics and Diagnostic Criteria of PANDAS Recognition // Int. J. Mol. Sci. – 2020. – Vol. 21(4). – P. 1476. doi:10.3390/ijms21041476.
3. Binstock T. Intra-monocyte pathogens delineate autism subgroups // Med. Hypotheses. – 2001. – Vol. 56(4). – P. 523–531.
4. Cabanlit M., Wills S., Goines P. et al. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder // Ann. N. Y. Acad. Sci. – 2007. – Vol. 107. – P. 92–103. doi: 10.1196/annals.1381.010.
5. Cirillo E., Giardino G., Ricci S. et al. Consensus of the Italian Primary Immunodeficiency Network on transition management from pediatric to adult care in patients affected with childhood-onset inborn errors of immunity // J. Allergy Clin. Immunol. – 2020. – Vol. 146(5). – P. 967–983. doi: 10.1016/j.jaci.2020.08.010.
6. Cocchi P., Mori S., Ravina A. Myeloperoxidase-deficient leucocytes in streptococcal infections // Helv. Paediatr. Acta. – 1973. – Vol. 28(1). – P. 79–85.
7. DeLong G.R., Bean S.C., Brown F.R. 3rd. Acquired reversible autistic syndrome in acute encephalopathic illness in children // Arch. Neurol. 1981. – Vol. 38(3). – P. 191–194. doi: 10.1001/archneur.1981.00510030085013.
8. Dop D., Marcu I.R., Padureanu R. et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections // Exp. Ther. Med. – 2021. – Vol. 21(1). – P. 94. doi: 10.3892/etm.2020.9526.
9. Ghaziuddin M., Tsai L.Y., Eilers L., Ghaziuddin N. Brief report: autism and herpes simplex encephalitis // J. Autism. Dev. Disord. –1992. – Vol. 22(1). – P. 107–113. doi: 10.1007/BF01046406.
10. Gillberg I.C. Autistic syndrome with onset at age 31 years: herpes encephalitis as a possible model for childhood autism // Dev. Med. Child. Neurol. – 1991. – Vol. 33(10). – P. 920–924. doi: 10.1111/j.1469-8749.1991.tb14804.x.
11. González-Toro M.C., Jadraque-Rodríguez R., Sempere-Pérez Á. et al. Anti-NMDA receptor encephalitis: two paediatric cases // Rev. Neurol. – 2013. – Vol. 57(11). – P. 504–508.
12. Guo B.Q., Li H.B., Ding S.B. et al. Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta-analysis // Psychiatry Res. – 2020. – Vol. 291. – P. 113283. doi: 10.1016/j.psychres.2020.113283.
13. Harberts E., Yao K., Wohler J.E. et al. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway // Proc. Natl. Acad. Sci USA. – 2011. – Vol. 108(33). – P. 13734-13739. doi: 10.1073/pnas.1105143108.
14. Heath J., D Grant M. The Immune Response Against Human Cytomegalovirus Links Cellular to Systemic Senescence // Cells. – 2020. – Vol. 9(3). – P. 766. doi: 10.3390/cells9030766.
15. Hughes H.K., Ashwood P. Anti-Candida albicans IgG Antibodies in Children With Autism Spectrum Disorders // Front. Psychiatry. – 2018. – Vol. 26(9). – P. 627. doi: 10.3389/fpsyt.2018.00627.
16. Hughes H.K., Ko E.M., Rose D., Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders // Front Cell Neurosci. – 2018. – Vol. 12. – P. 405. doi: 10.3389/fncel.2018.00405.
17. Jyonouchi H., Geng L., Streck D.L., Toruner G.A. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study // J. Neuroinflammation. – 2012. – Vol. 9. – P. 4.
18. Kiani R., Lawden M., Eames P. et al. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism // BJPsych. Bull. – 2015. – Vol. 39(1). – P. 32-35. doi: 10.1192/pb.bp.112.041954.
19. Klebanoff S.J., Kettle A.J., Rosen H. et al. Myeloperoxidase: a front-line defender against phagocytosed microorganisms // J. Leukoc. Biol. – 2013. – Vol. 93(2). – P. 185–198. doi: 10.1189/jlb.0712349.
20. Kong X., Liu J., Cetinbas M. et al. New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers // Nutrients. – 2019. – Vol. 11(9). – P. 2128. doi: 10.3390/nu11092128.
21. Kuhn M., Grave S., Bransfield R., Harris S. Long term antibiotic therapy may be an effective treatment for children co-morbid with Lyme disease and autism spectrum disorder // Med Hypotheses. – 2012. – Vol. 78(5). – P. 606–615. doi: 10.1016/j.mehy.2012.01.037.
22. Lecointe D., Fabre M., Habes D. et al. Macrophage activation syndrome in primary human herpes virus-6 infection: a rare condition after liver transplantation in infants // Gastroenterol. Clin. Biol. – 2000. – Vol. 24(12). – P. 1227-1228.
23. Li Y., Qiu S., Shi J. et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis // BMC Pediatr. 2020. – Vol. 20(1). – P. 449. doi: 10.1186/s12887-020-02330-3.
24. Li Ye., Viscidi R.P., Kannan G. et al. Chronic Toxoplasma gondii Infection Induces Anti-N-Methyl-d-Aspartate Receptor Autoantibodies and Associated Behavioral Changes and Neuropathology // Infect. Immun. – 2018. – Vol. 86(10). – e00398-18. doi:10.1128/IAI.00398-18.
25. Linde A., Söderström R., Smith C.I. et al. Herpesvirus serology, aberrant specific immunoglobulin G2 and G3 subclass patterns and Gm allotypes in individuals with low levels of IgG3 // Clin. Exp. Immunol. – 1992. – Vol. 90(2). – P. 199–203.
26. Marseglia L.M., Nicotera A., Salpietro V. et al. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns // Oxid. Med. Cell. Longev. – 2015. – Vol. 2015. – P. 543134. doi: 10.1155/2015/543134.
27. Masi A., Quintana D.S., Glozier N. et al. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis // Mol. Psychiatry. – 2015. – Vol.20(4). – P. 440–446. doi: 10.1038/mp.2014.59.
28. Mead J., Ashwood P. Evidence supporting an altered immune response in ASD // Immunol. Lett. – 2015. – Vol. 163(1). – P. 49-55. doi: 10.1016/j.imlet.2014.11.006.
29. Millichap J.J., Millichap J.G. Role of HHV-6B Infection in Mesial Temporal Lobe Epilepsy // Pediatr. Neurol. Briefs. – 2015. – Vol. 29(5). – P. 40. doi: 10.15844/pedneurbriefs-29-5-7.
30. Mohammad N.S., Shruti P.S., Bharathi V. et al. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders // Psychiatr. Genet. – 2016. – Vol. 26(6). – P. 281–286. doi: 10.1097/YPG.0000000000000152.
31. Monge-Galindo L., Pérez-Delgado R., López-Pisón J. et al. Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19-year period // Rev. Neurol. – 2010. – Vol. 50(6). – P. 341–348.
32. Nauseef W.M. Diagnostic assays for myeloperoxidase and myeloperoxidase deficiency // Methods Mol. Biol. – 2014. – Vol. 1124. – P. 537–546.
33. Nayeri T., Sarvi S., Moosazadeh M. et al. Relationship between toxoplasmosis and autism: A systematic review and meta-analysis // Microb. Pathog. – 2020 – Vol. 147. – P. 104434. doi: 10.1016/j.micpath.2020.104434.
34. Nepal G., Shing K.Y., Yadav J.K. et al. Efficacy and safety of rituximab in autoimmune encephalitis: A meta-analysis // Acta Neurol. Scand. – 2020. – Vol. 142(5). – P. 449–459. doi: 10.1111/ane.13291.
35. Nicolson G.L., Gan R., Nicolson N.L., Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders // J. Neurosci Res. – 2007. – Vol. 85(5). – P. 1143–1148. doi: 10.1002/jnr.21203.
36. Orange J.S. Unraveling human natural killer cell deficiency // J. Clin. Invest. – 2012. – Vol. 122(3). – P. 798–801.
37. Pinillos-Pisón R., Llorente-Cereza M.T., López-Pisón J. Congenital infection by cytomegalovirus. A review of our 18 years’ experience of diagnoses // Rev. Neurol. – 2009. – Vol. 48(7). – P. 349–353.
38. Pu D., Shen Y., Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis // Autism Res. – 2013. – Vol. 6(5). – P. 384–392. doi: 10.1002/aur.1300.
39. Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility // Metab. Brain Dis. – 2016. – Vol. 31(4). – P. 727–735. doi: 10.1007/s11011-016-9815-0.
40. Sadeghiyeh T., Dastgheib S.A., Mirzaee-Khoramabadi K. et al. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis // Asian J Psychiatr. – 2019. – Vol. 46. – P. 54–61. doi:10.1016/j.ajp.2019.09.016.
41. Saghazadeh A., Ataeinia B., Keynejad K. et al. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude // J. Psychiatr. Res. – 2019. – Vol. 115. – P. 90–102.
42. Sakamoto A., Moriuchi H., Matsuzaki J. et al. Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit // Brain. Dev. – 2015. – Vol. 37(2). – P. 200–205. doi: 10.1016/j.braindev.2014.03.016.
43. Santocchi E., Guiducci L., Fulceri F. et al. Gut to brain interaction in Autism Spectrum Disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters // BMC Psychiatry. – 2016. – Vol. 16. – P. 183. doi: 10.1186/s12888-016-0887-5.
44. Singh V.K., Warren R.P., Odell J.D. et al. Antibodies to myelin basic protein in children with autistic behavior // Brain. Behav. Immun. – 1993 – Vol. 7(1). – P. 97–103.
45. Ueda S., Uchiyama S., Azzi T. et al. Oropharyngeal group A streptococcal colonization disrupts latent Epstein-Barr virus infection // J. Infect. Dis. – 2014. – Vol. 209(2). – P. 255-264. doi: 10.1093/infdis/jit428.
46. Valayi S., Eftekharian M.M., Taheri M., Alikhani M.Y. Evaluation of antibodies to cytomegalovirus and Epstein-Barr virus in patients with autism spectrum disorder // Hum. Antibodies. – 2017. – Vol. 26(3). – P. 165–169. doi: 10.3233/HAB-180335.
47. Venâncio P., Brito M. J., Pereira G., Vieira J. P. Anti-N-methyl-D-aspartate receptor encephalitis with positive serum antithyroid antibodies, IgM antibodies against mycoplasma pneumoniae and human herpesvirus 7 PCR in the CSF // Pediatr. Infect. Dis. J. – 2014. – Vol. 33 (8). – P. 882 – 883. doi: 10.1097/INF.0000000000000408.
48. Watanabe T., Sugawara H., Tamura H. et al. Co-infection with group A Streptococci and Epstein-Barr virus presenting with acute glomerulonephritis and acute left ventricular dysfunction // Intern. Med. – 2012. – Vol. 51(18). – P. 2639-2643. doi: 10.2169/ internalmedicine.51.7761.
49. Więsik-Szewczyk E., Jahnz-Różyk K. From infections to autoimmunity: Diagnostic challenges in common variable immunodeficiency // World J. Clin. Cases. – 2020. – Vol. 8(18). – P. 3942–3955. doi: 10.12998/wjcc.v8.i18.3942.
50. Wipfler P., Dunn N., Beiki O. et al. The Viral Hypothesis of Mesial Temporal Lobe Epilepsy - Is Human Herpes Virus-6 the Missing Link? A systematic review and meta-analysis // Seizure. – 2018. – Vol. 54. – P. 33–40. doi: 10.1016/j.seizure.2017.11.015.
51. Zhao X.Y, Ewald S.E. The molecular biology and immune control of chronic Toxoplasma gondii infection // J. Clin. Invest. – 2020. – Vol. 130(7). – P. 3370–3380. doi: 10.1172/JCI136226.
52. Zuo W., Zhao X. Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application // Clin. Immunol. – 2021. – Vol. 227. – P. 108727. doi: 10.1016/j.clim.2021.108727.
Published
2021-12-30
How to Cite
Мальцев, Д. (2021). THE RESULTS OF THE STUDY OF THE MICROBIAL SPECTRUM IN CHILDREN WITH AUTISM SPECTRUM DISORDERS ASSOCIATED WITH GENETIC DEFICIENCY OF THE FOLATE CYCLE. Men’s Health, Gender and Psychosomatic Medicine, (1-2), 26-39. https://doi.org/10.37321/UJMH.2021.1-2-04